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Abstract

Cartesian and polar form of a complex number. The Argand diagram. Roots of unity. The relation-
ship between exponential and trigonometric functions. The geometry of the Argand diagram.

1 The Need For Complex Numbers
All of you will know that the two roots of the quadratic equation ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac
2a

(1)

and solving quadratic equations is something that mathematicians have been able to do since the time
of the Babylonians. When b2 − 4ac > 0 then these two roots are real and distinct; graphically they are
where the curve y = ax2 + bx + c cuts the x-axis. When b2 − 4ac = 0 then we have one real root and
the curve just touches the x-axis here. But what happens when b2 − 4ac < 0? Then there are no real
solutions to the equation as no real squares to give the negative b2 − 4ac. From the graphical point of
view the curve y = ax2 + bx+ c lies entirely above or below the x-axis.
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It is only comparatively recently that mathematicians have been comfortable with these roots when
b2 − 4ac < 0. During the Renaissance the quadratic would have been considered unsolvable or its roots
would have been called imaginary. (The term ‘imaginary’ was first used by the French Mathematician
René Descartes (1596-1650). Whilst he is known more as a philosopher, Descartes made many important
contributions to mathematics and helped found co-ordinate geometry — hence the naming of Cartesian
co-ordinates.) If we imagine

√
−1 to exist, and that it behaves (adds and multiplies) much the same as

other numbers then the two roots of the quadratic can be written in the form

x = A±B
√
−1 (2)

where

A = − b

2a
and B =

√
4ac− b2

2a
are real numbers.

∗These handouts are produced by Richard Earl, who is the Schools Liaison and Access Officer for mathematics, statistics
and computer science at Oxford University. Any comments, suggestions or requests for other material are welcome at
earl@maths.ox.ac.uk

1



But what meaning can such roots have? It was this philosophical point which pre-occupied mathe-
maticians until the start of the 19th century when these ‘imaginary’ numbers started proving so useful
(especially in the work of Cauchy and Gauss) that essentially the philosophical concerns just got forgotten
about.

Notation 1 We shall from now on write i for
√
−1. This notation was first introduced by the Swiss

mathematician Leonhard Euler (1707-1783). Much of our modern notation is due to him including e and
π. Euler was a giant in 18th century mathematics and the most prolific mathematician ever. His most
important contributions were in analysis (eg. on infinite series, calculus of variations). The study of
topology arguably dates back to his solution of the Königsberg Bridge Problem. (Many books, particularly
those written for engineers and physicists use j instead.)

Definition 2 A complex number is a number of the form a + bi where a and b are real numbers. If
z = a + bi then a is known as the real part of z and b as the imaginary part. We write a = Re z and
b = Im z. Note that real numbers are complex — a real number is simply a complex number with no
imaginary part. The term ‘complex number’ is due to the German mathematician Carl Gauss (1777-
1855). Gauss is considered by many the greatest mathematician ever. He made major contributions to
almost every area of mathematics from number theory, to non-Euclidean geometry, to astronomy and
magnetism. His name precedes a wealth of theorems and definitions throughout mathematics.

Notation 3 We write C for the set of all complex numbers.

One of the first major results concerning complex numbers and which conclusively demonstrated their
usefulness was proved by Gauss in 1799. From the quadratic formula (1) we know that all quadratic
equations can be solved using complex numbers — what Gauss was the first to prove was the much more
general result:

Theorem 4 (FUNDAMENTAL THEOREM OF ALGEBRA). The roots of any polynomial equation
a0 + a1x+ a2x

2 + · · ·+ anx
n = 0 with real (or complex) coefficients ai are complex. That is there are n

(not necessarily distinct) complex numbers γ1, . . . , γn such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = an (x− γ1) (x− γ2) · · · (x− γn) .

In particular the theorem shows that an n degree polynomial has, counting multiplicities, n roots in C.

The proof of this theorem is far beyond the scope of this article. Note that the theorem only guarantees
the existence of the roots of a polynomial somewhere in C unlike the quadratic formula which plainly
gives us the roots. The theorem gives no hints as to where in C these roots are to be found.

2 Basic Operations
We add, subtract, multiply and divide complex numbers much as we would expect. We add and subtract
complex numbers by adding their real and imaginary parts:-

(a+ bi) + (c+ di) = (a+ c) + (b+ d) i,

(a+ bi)− (c+ di) = (a− c) + (b− d) i.

We can multiply complex numbers by expanding the brackets in the usual fashion and using i2 = −1,

(a+ bi) (c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (ad+ bc) i,

and to divide complex numbers we note firstly that (c+ di) (c− di) = c2 + d2 is real. So

a+ bi

c+ di
=

a+ bi

c+ di
× c− di

c− di
=

µ
ac+ bd

c2 + d2

¶
+

µ
bc− ad

c2 + d2

¶
i.

The number c−di which we just used, as relating to c+di, has a special name and some useful properties
— see Proposition 11.
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Definition 5 Let z = a + bi. The conjugate of z is the number a − bi and this is denoted as z (or in
some books as z∗).

• Note from equation (2) that when the real quadratic equation ax2 + bx + c = 0 has complex
roots then these roots are conjugates of each other. Generally if z0 is a root of the polynomial
anz

n + an−1z
n−1 + · · ·+ a0 = 0 where the ai are real then so is its conjugate z0.

Problem 6 Calculate, in the form a+ bi, the following complex numbers:

(1 + 3i) + (2− 6i) , (1 + 3i)− (2− 6i) , (1 + 3i) (2− 6i) , 1 + 3i

2− 6i .

The addition and subtraction are simple calculations, adding (and substracting) real parts, then imaginary
parts:

(1 + 3i) + (2− 6i) = (1 + 2) + (3 + (−6)) i = 3− 3i;
(1 + 3i)− (2− 6i) = (1− 2) + (3− (−6)) i = −1 + 9i.

And multiplying is just a case of expanding brackets and remembering i2 = −1.

(1 + 3i) (2− 6i) = 2 + 6i− 6i− 18i2 = 2 + 18 = 20.

Division takes a little more care, and we need to remember to multiply through by the conjugate of the
denominator:

1 + 3i

2− 6i =
(1 + 3i) (2 + 6i)

(2− 6i) (2 + 6i) =
2 + 6i+ 6i+ 18i2

22 + 62
=
−16 + 12i

40
=
−2
5
+
3

10
i.

We present the following problem because it is a common early misconception involving complex
numbers – if we need a new number i as the square root of −1 then shouldn’t we need another one for
the square root of i? But z2 = i is just another polynomial equation, with complex coefficients, and two
(perhaps repeated) roots are guaranteed by the Fundamental Theorem of Algebra. They are also quite
easy to calculate:—

Problem 7 Find all those z that satisfy z2 = i.

Suppose that z2 = i and z = a+ bi, where a and b are real. Then

i = (a+ bi)
2
=
¡
a2 − b2

¢
+ 2abi.

Comparing the real and imaginary parts we see that

a2 − b2 = 0 and 2ab = 1.

So b = ±a from the first equation. Substituting b = a into the second equation gives a = b = 1/
√
2 or

a = b = −1/
√
2. Substituting b = −a into the second equation of gives −2a2 = 1 which has no real

solution in a.

So the two z which satisfy z2 = i, i.e. the two square roots of i, are

1 + i√
2

and
−1− i√

2
.

Notice, as with square roots of real numbers, that the two square are negative one another.
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Problem 8 Use the quadratic formula to find the two solutions of

z2 − (3 + i) z + (2 + i) = 0.

We see that a = 1, b = −3− i, and c = 2 + i. So

b2 − 4ac = (−3− i)
2 − 4× 1× (2 + i) = 9− 1 + 6i− 8− 4i = 2i.

Knowing
√
i = ±1 + i√

2
,

from the previous problem, we have

x =
−b±

√
b2 − 4ac
2a

=
(3 + i)±

√
2i

2
=
(3 + i)±

√
2
√
i

2

=
(3 + i)± (1 + i)

2
=
4 + 2i

2
or

2

2
= 2 + i or 1.

Note that the two roots are not conjugates of one another — this need not be the case here as the
coefficients a, b, c are not all real.

3 The Argand Diagram
The real numbers are often represented on the real line which increase as we move from left to right

-4 -2 0 2 4πè !!!!2

The real number line

The complex numbers, having two components, their real and imaginary parts, can be represented as a
plane; indeed C is sometimes referred to as the complex plane, but more commonly when we represent
C in this manner we call it an Argand diagram. (After the Swiss mathematician Jean-Robert Argand
(1768-1822)). The point (a, b) represents the complex number a+ bi so that the x-axis contains all the
real numbers, and so is termed the real axis, and the y-axis contains all those complex numbers which
are purely imaginary (i.e. have no real part) and so is referred to as the imaginary axis.
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We can think of z0 = a+ bi as a point in an Argand diagram but it can often be useful to think of it as
a vector as well. Adding z0 to another complex number translates that number by the vector

¡
a
b

¢
. That

is the map z 7→ z + z0 represents a translation a units to the right and b units up in the complex plane.

Note that the conjugate z of a point z is its mirror image in the real axis. So, z 7→ z represents reflection
in the real axis. We shall discuss in more detail the geometry of the Argand diagram in Sections 9 to 11.

A complex number z in the complex plane can be represented by Cartesian co-ordinates, its real and
imaginary parts, but equally useful is the representation of z by polar co-ordinates. If we let r be the
distance of z from the origin and, if z 6= 0, we let θ be the angle that the line connecting z to the origin
makes with the positive real axis then we can write

z = x+ iy = r cos θ + ir sin θ. (3)

The relations between z’s Cartesian and polar co-ordinates are simple – we see that

x = r cos θ and y = r sin θ,

r =
p
x2 + y2 and tan θ =

y

x
.

Definition 9 The number r is called the modulus of z and is written |z| . If z = x+ iy then

|z| =
p
x2 + y2.

Definition 10 The number θ is called the argument of z and is written arg z. If z = x+ iy then

sin arg z =
yp

x2 + y2
and cos arg z =

xp
x2 + y2

.

Note that the argument of 0 is undefined. Note also that arg z is defined only upto multiples of 2π. For
example the argument of 1 + i could be π/4 or 9π/4 or −7π/4 etc. For simplicity in this course we shall
give all arguments in the range 0 ≤ θ < 2π so that π/4 would be the preferred choice here.
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A Complex Number’s Cartesian and Polar Co-ordinates
We now prove some important formulae about properties of the modulus, argument and conjugation:—

Proposition 11 The modulus, argument and conjugate functions satisfy the following properties. Let
z, w ∈ C.Then

|zw| = |z| |w| ,
¯̄̄ z
w

¯̄̄
=
|z|
|w| if w 6= 0,

z ± w = z ± w, zw = z w,

arg (zw) = arg z + argw if z, w 6= 0, zz = |z|2 ,

arg
³ z
w

´
= arg z − argw if z, w 6= 0,

³ z
w

´
=

z

w
if w 6= 0,

|z| = |z| , arg z = − arg z,
|z + w| ≤ |z|+ |w| , ||z|− |w|| ≤ |z − w| .
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A selection of the above statements is proved here; the remaining ones are left as exercises.
Proof. |zw| = |z| |w| .
Let z = a+ bi and w = c+ di. Then zw = (ac− bd) + (bc+ ad) i so that

|zw| =

q
(ac− bd)

2
+ (bc+ ad)

2

=
p
a2c2 + b2d2 + b2c2 + a2d2

=
p
(a2 + b2) (c2 + d2)

=
p
a2 + b2

p
c2 + d2 = |z| |w| .

Proof. arg (zw) = arg z + argw.
Let z = r (cos θ + i sin θ) and w = R (cosΘ+ i sinΘ) . Then

zw = rR (cos θ + i sin θ) (cosΘ+ i sinΘ)

= rR ((cos θ cosΘ− sin θ sinΘ) + i (sin θ cosΘ+ cos θ sinΘ))

= rR (cos (θ +Θ) + i sin (θ +Θ)) .

We can read off that |zw| = rR = |z| |w| , which is a second proof of the previous part, and also that

arg (zw) = θ +Θ = arg z + argw, up to multiples of 2π.

Proof. zw = z w.
Let z = a+ bi and w = c+ di. Then

zw = (ac− bd) + (bc+ ad) i

= (ac− bd)− (bc+ ad) i

= (a− bi) (c− di) = z w.

Proof. (Triangle Inequality) |z + w| ≤ |z| + |w| — a diagrammatic proof of this is simple and explains
the inequality’s name:—

0.5 1 1.5 2 2.5 3
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z+w

w

z w Has a vector L

A Diagrammatic Proof Of The Triangle Inequality

Note that the shortest distance between 0 and z + w is the modulus of z + w. This is shorter in length
than the path which goes from 0 to z to z + w. The total length of this second path is |z|+ |w| .
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For an algebraic proof, note that for any complex number

z + z̄ = 2Re z and Re z ≤ |z| .

So for z, w ∈ C,
zw̄ + z̄w

2
= Re (zw̄) ≤ |zw̄| = |z| |w̄| = |z| |w| .

Then

|z + w|2 = (z + w) (z + w)

= (z + w) (z̄ + w̄)

= zz̄ + zw̄ + z̄w + ww̄

≤ |z|2 + 2 |z| |w|+ |w|2 = (|z|+ |w|)2 ,

to give the required result.

4 Roots Of Unity.
Consider the complex number

z0 = cos θ + i sin θ

where θ is some real number. The modulus of z0 is 1 and the argument of z0 is θ.
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Powers of z0

In Proposition 11 we proved for z,w 6= 0 that

|zw| = |z| |w| and arg (zw) = arg z + argw,

and so for any integer n, and any z 6= 0, we have that

|zn| = |z|n and arg (zn) = n arg z.

So the modulus of (z0)
n is 1 and the argument of (z0)

n is nθ or putting this another way we have the
famous theorem due to De Moivre:

Theorem 12 (DE MOIVRE’S THEOREM) For a real number θ and integer n we have that

cosnθ + i sinnθ = (cos θ + i sin θ)n .

(De Moivre(1667-1754), a French protestant who moved to England, is best remembered for this formula
but his major contributions were in probability and appeared in his The Doctrine Of Chances (1718)).
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We apply these ideas now to the following:

Problem 13 Let n be a natural number. Find all those complex z such that zn = 1.

We know from the Fundamental Theorem of Algebra that there are (counting multiplicities) n solutions
— these are known as the nth roots of unity.

Let’s first solve zn = 1 directly for n = 2, 3, 4.

• When n = 2 we have
0 = z2 − 1 = (z − 1) (z + 1)

and so the square roots of 1 are ±1.

• When n = 3 we can factorise as follows

0 = z3 − 1 = (z − 1)
¡
z2 + z + 1

¢
.

So 1 is a root and completing the square we see

0 = z2 + z + 1 =

µ
z +

1

2

¶2
+
3

4

which has roots −1/2±
√
3i/2. So the cube roots of 1 are

1 and
−1
2
+

√
3

2
i and

−1
2
−
√
3

2
i.

• When n = 4 we can factorise as follows

0 = z4 − 1 =
¡
z2 − 1

¢ ¡
z2 + 1

¢
= (z − 1) (z + 1) (z − i) (z + i) ,

so that the fourth roots of 1 are 1,−1, i and −i.

Plotting these roots on Argand diagrams we can see a pattern developing
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Returning to the general case suppose that

z = r (cos θ + i sin θ) and satisfies zn = 1.

Then by the observations preceding De Moivre’s Theorem zn has modulus rn and has argument nθ whilst
1 has modulus 1 and argument 0. Then comparing their moduli

rn = 1 =⇒ r = 1.

Comparing arguments we see nθ = 0 up to multiples of 2π. That is nθ = 2kπ for some integer k giving
θ = 2kπ/n. So we see that if zn = 1 then z has the form

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k is an integer.

At first glance there seem to be an infinite number of roots but, as cos and sin have period 2π, then these
z repeat with period n.
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Hence we have shown

Proposition 14 The nth roots of unity, that is the solutions of the equation zn = 1, are

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k = 0, 1, 2, . . . , n− 1.

Plotted on an Argand diagram these nth roots of unity form a regular n-gon inscribed within the unit
circle with a vertex at 1.

Problem 15 Find all the solutions of the cubic z3 = −2 + 2i.

If we write −2 + 2i in its polar form we have

−2 + 2i =
√
8

µ
cos

µ
3π

4

¶
+ i sin

µ
3π

4

¶¶
.

So if z3 = −2 + 2i and z has modulus r and argument θ then

r3 =
√
8 and 3θ =

3π

4
up to multiples of 2π,

which gives

r =
√
2 and θ =

π

4
+
2kπ

3
for some integer k.

As before we need only consider k = 0, 1, 2 (as other k lead to repeats) and so the three roots are
√
2
³
cos
³π
4

´
+ i sin

³π
4

´´
= 1 + i,

√
2

µ
cos

µ
11π

12

¶
+ i sin

µ
11π

12

¶¶
=

Ã
−1
2
−
√
3

2

!
+ i

Ã√
3

2
− 1
2

!
,

√
2

µ
cos

µ
19π

12

¶
+ i sin

µ
19π

12

¶¶
=

Ã
−1
2
+

√
3

2

!
+ i

Ã
−
√
3

2
− 1
2

!
.

5 The Complex Exponential Function
The real exponential function ex (or expx) can be defined in several different ways. One such definition
is by power series

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

(Recall here that the notation n! denotes the product 1× 2× · · · × n and is read ‘n factorial’). It is the
case that the infinite sum above converges for all real values of x. What this means is that for any real
value of our input x, as we add more and more of the terms from the infinite sum above we generate a
list of numbers which get closer and closer to some value — this value we denote ex. Different inputs will
mean the sum converges to different answers. As an example let’s consider the case when x = 2:

1 term: 1 = 1.0000 6 terms: 1 + · · ·+ 32
120

∼= 7.2667
2 terms: 1 + 2 = 3.0000 7 terms 1 + · · ·+ 64

720
∼= 7.3556

3 terms: 1 + 2 + 4
2 = 5.0000 8 terms 1 + · · ·+ 128

5040
∼= 7.3810

4 terms: 1 + · · ·+ 8
6

∼= 6.3333 9 terms 1 + · · ·+ 256
40320

∼= 7.3873
5 terms: 1 + · · ·+ 16

24 = 7.0000 ∞ terms e2 ∼= 7.3891

This idea of a power series defining a function should not be too alien – it is likely that you have already
seen that the infinite geometric progression

1 + x+ x2 + x3 + · · ·+ xn + · · ·

converges to (1− x)
−1

, at least when |x| < 1. This is another example of a power series defining a
function.
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Proposition 16 Let x be a real number. Then

1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

converges to a real value which we shall denote as ex. The function ex has the following properties

(i)
d
dx

ex = ex, e0 = 1,

(ii) ex+y = exey for any real x, y.

(iii) ex > 0 for any real x.

and a sketch of the exponential’s graph is given below.
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The graph of y = ex.

That these properties hold true of ex are discussed in more detail in the appendices at the end of this
article.

• Property (i) also characterises the exponential function. That is, there is a unique real-valued
function ex which differentiates to itself, and which takes the value 1 at 0.

• Note that when x = 1 this gives us the identity

e = 1 + 1 +
1

2!
+
1

3!
+ · · ·+ 1

n!
+ · · ·

We can use either the power series definition, or one equivalent to property (i), to define the complex
exponential function.

Proposition 17 Let z be a complex number. Then

1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

converges to a complex value which we shall denote as ez. The function ez has the following properties

(i)
d
dz

ez = ez, e0 = 1,

(ii) ez+w = ezew for any complex z, w,

(iii) ez 6= 0 for any complex z.

Analytically we can differentiate complex functions in much the same way as we differentiate real func-
tions. The product, quotient and chain rules apply in the usual way, and zn has derivative nzn−1 for any
integer n.
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We can calculate ez to greater and greater degrees of accuracy as before, by taking more and more
terms in the series. For example to calculate e1+i we see

1 term: 1 = 1.0000
2 terms: 1 + (1 + i) = 2.0000 + 1.0000i
3 terms: 1 + (1 + i) + 2i

2 = 2.0000 + 2.0000i
4 terms: 1 + · · ·+ −2+2i6

∼= 1.6667 + 2.3333i
5 terms: 1 + · · ·+ −424 ∼= 1.5000 + 2.3333i
6 terms: 1 + · · ·+ −4−4i120

∼= 1.4667 + 2.3000i
7 terms: 1 + · · ·+ −8i720

∼= 1.4667 + 2.2889i
8 terms: 1 + · · ·+ 8−8i

5040
∼= 1.4683 + 2.2873i

9 terms: 1 + · · ·+ 16
40320

∼= 1.4687 + 2.2873i
∞ terms: e1+i ∼= 1.4687 + 2.2874i

To close this section we introduce two functions related to the exponential function — namely hyperbolic
cosine cosh z and hyperbolic sine sinh z.

Definition 18 Let z be a complex number. Then we define

cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
.

Corollary 19 Hyperbolic sine and hyperbolic cosine have the following properties (which can easily be
derived from the properties of the exponential function given in Proposition 17). For complex numbers z
and w:

(i) cosh z = 1 +
z2

2!
+

z4

4!
+ · · ·+ z2n

(2n)!
+ · · ·

(ii) sinh z = z +
z3

3!
+

z5

5!
+ · · ·+ z2n+1

(2n+ 1)!
+ · · ·

(iii)
d
dz
cosh z = sinh z and

d
dz
sinh z = cosh z,

(iv) cosh (z + w) = cosh z coshw + sinh z sinhw,

(v) sinh (z + w) = sinh z coshw + cosh z sinhw,

(vi) cosh (−z) = cosh z and sinh (−z) = − sinh z.

and graphs of the sinh and cosh are sketched below for real values of x
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The graph of y = coshx
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6 The Complex Trigonometric Functions.
The real functions sine and cosine can similarly be defined by power series and other characterising
properties. Note that these definitions give us sine and cosine of x radians.

Proposition 20 Let x be a real number. Then

1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · , and

x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · ·

converge to real values which we shall denote as cosx and sinx. The functions cosx and sinx have
the following properties

(i)
d2

dx2
cosx = − cosx, cos 0 = 1, cos0 0 = 0,

(ii)
d2

dx2
sinx = − sinx, sin 0 = 0, sin0 0 = 1,

(iii)
d
dx
cosx = − sinx, and

d
dx
sinx = cosx,

(iv) −1 ≤ cosx ≤ 1 and − 1 ≤ sinx ≤ 1,
(v) cos (−x) = cosx and sin (−x) = − sinx.

• Property (i) above characterises cosx and property (ii) characterises sinx — that is cosx and sinx
are the unique real functions with these respective properties.

-4 -2 2 4

-1

-0.5

0.5

1

The graph of y = sinx

-4 -2 2 4

-1

-0.5

0.5

1

The graph of y = cosx
As before we can extend these power series to the complex numbers to define the complex trigonometric
functions.

Proposition 21 Let z be a complex number. Then the series

1− z2

2!
+

z4

4!
− z6

6!
+ · · ·+ (−1)n z2n

(2n)!
+ · · · , and

z − z3

3!
+

z5

5!
− z7

7!
+ · · ·+ (−1)n z2n+1

(2n+ 1)!
+ · · ·

converge to complex values which we shall denote as cos z and sin z. The functions cos and sin have the
following properties

(i)
d2

dz2
cos z = − cos z, cos 0 = 1, cos0 0 = 0,

(ii)
d2

dz2
sin z = − sin z, sin 0 = 0, sin0 0 = 1,

(iii)
d
dz
cos z = − sin z, and

d
dz
sin z = cos z,

(iv) Neither sin nor cos are bounded on the complex plane,

(v) cos (−z) = cos z and sin (−z) = − sin z.
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Problem 22 Prove that cos2 z + sin2 z = 1 for all complex numbers z. (Note that this does NOT imply
that cos z and sin z have modulus less than or equal to 1.)

Define
F (z) = sin2 z + cos2 z.

If we differentiate F using the previous proposition and the product rule we see

F 0 (z) = 2 sin z cos z + 2 cos z × (− sin z) = 0.

As the derivative F 0 = 0 then F must be constant. We note that

F (0) = sin2 0 + cos2 0 = 02 + 12 = 1

and hence F (z) = 1 for all z.

Contrast this with:

Problem 23 Prove that cosh2− sinh2 z = 1 for all complex numbers z.

Recall that

cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
.

So using eze−z = ez−z = e0 = 1 from Proposition 17

cosh2 z − sinh2 z =

"
(ez)

2
+ 2eze−z + (ez)2

4

#
−
"
(ez)

2 − 2eze−z + (e−z)2

4

#

=
4eze−z

4
= 1.

Remark 24 It is for these reasons that the functions cosh and sinh are called hyperbolic functions and
the functions sin and cos are often referred to as the circular functions. From the first problem above
we see that the point (cos t, sin t) lies on the circle x2 + y2 = 1. As we vary t between 0 and 2π this
point moves once anti-clockwise around the unit circle. In contrast the point (cosh t, sinh t) lies on the
curve x2 − y2 = 1. This is the equation of a hyperbola. As t varies through the reals then (cosh t, sinh t)
maps out all of the right branch of the hyperbola. We can obtain the left branch by varying the point
(− cosh t, sinh t) .

7 Identities
We prove here the fundamental identity relating the exponential and trigonometric functions.

Theorem 25 Let z be a complex number. Then

eiz = cos z + i sin z.

Proof. Recalling the power series definitions of the exponential and trigonometric functions from Propo-
sitions 17 and 21 we see

eiz = 1 + iz +
(iz)2

2!
+
(iz)3

3!
+
(iz)4

4!
+
(iz)5

5!
+ · · ·

= 1 + iz − z2

2!
− iz3

3!
+

z4

4!
+

iz5

5!
+ · · ·

=

µ
1− z2

2!
+

z4

4!
− · · ·

¶
+ i

µ
z − z3

3!
+

z5

5!
− · · ·

¶
= cos z + i sin z.

13



• Note that cos z 6= Re eiz and sin z 6= Im eiz in general for complex z.

• When we put z = π into this proposition we find

eiπ = −1

which was a result first noted by Euler. Note also that the complex exponential function has period
2πi. That is

ez+2πi = ez for all complex numbers z.

• More generally when θ is a real number we see that

eiθ = cos θ + i sin θ

and so the polar form of a complex number is more commonly written as

z = reiθ

rather than as z = r cos θ + i sin θ. Moreover in these terms, De Moivre’s Theorem (see Theorem
12) states that ¡

eiθ
¢n
= ei(nθ).

• If z = x+ iy then
ez = ex+iy = exeiy = ex cos y + iex sin y

and so
|ez| = ex and arg ez = y.

As a corollary to the previous theorem we can now express cos z and sin z in terms of the exponential.
We note

Corollary 26 Let z be a complex number. Then

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

and

cosh z = cos iz and i sinh z = sin iz

cos z = cosh iz and i sin z = sinh iz.

Proof. As cos is even and sin is odd then

eiz = cos z + i sin z

and
e−iz = cos z − i sin z.

Solving for cos z and sin z from these simultaneous equations we arrive at the required expressions.
The others are easily verified from our these new expressions for cos and sin and our previous ones for
cosh and sinh .

14



8 Applications
We now turn these formula towards some applications and calculations.

Problem 27 Let θ be a real number. Show that

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

Recall from De Moivre’s Theorem that

(cos θ + i sin θ)5 = cos 5θ + i sin 5θ.

Now if x and y are real then by the Binomial Theorem

(x+ iy)5 = x5 + 5ix4y − 10x3y2 − 10ix2y3 + 5xy4 + iy5.

Hence

cos 5θ = Re (cos θ + i sin θ)5

= cos5 θ − 10 cos3 θ sin2 θ + 5cos θ sin4 θ
= cos5 θ − 10 cos3 θ

¡
1− cos2 θ

¢
+ 5 cos θ

¡
1− cos2 θ

¢2
= (1 + 10 + 5) cos5 θ + (−10− 10) cos3 θ + 5 cos θ
= 16 cos5 θ − 20 cos3 θ + 5 cos θ.

Problem 28 Let z be a complex number. Prove that

sin4 z =
1

8
cos 4z − 1

2
cos 2z +

3

8
.

Hence find the power series for sin4 z.

We have that

sin z =
eiz − e−iz

2i
.

So

sin4 z =
1

(2i)4
¡
eiz − e−iz

¢4
=

1

16

¡
e4iz − 4e2iz + 6− 4e−2iz + e−4iz

¢
=

1

16

¡¡
e4iz + e−4iz

¢
− 4

¡
e2iz + e−2iz

¢
+ 6
¢

=
1

16
(2 cos 4z − 8 cos 2z + 6)

=
1

8
cos 4z − 1

2
cos 2z +

3

8
,

as required. Now sin4 z has only even powers of z2n in its power series. When n > 0 the coefficient of
z2n will then equal

1

8
× (−1)n 42n

(2n)!
− 1
2
× (−1)n 22n

(2n)!
= (−1)n 2

4n−3 − 22n−1
(2n)!

z2n

which we note is zero when n = 1. Also when n = 0 we see that the constant term is 1/8−1/2+3/8 = 0.
So the required power series is

sin4 z =
∞X
n=2

(−1)n 2
4n−3 − 22n−1
(2n)!

z2n.
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Problem 29 Prove for any complex numbers z and w that

sin (z + w) = sin z cosw + cos z sinw.

Recalling the expressions for sin and cos from Corollary 26 we have

RHS =

µ
eiz − e−iz

2i

¶µ
eiw + e−iw

2

¶
+

µ
eiz + e−iz

2

¶µ
eiw − e−iw

2i

¶
=

2eizeiw − 2e−ize−iw
4i

=
ei(z+w) − e−i(z+w)

2i
= sin (z + w) = LHS.

Problem 30 Prove that for complex z and w

sin (z + iw) = sin z coshw + i cos z sinhw.

Use the previous problem recalling that cos (iw) = coshw and sin (iw) = i sinhw.

Problem 31 Let x be a real number and n a natural number. Show that
nX

k=0

cos kx =
cos n2x sin

n+1
2 x

sin 12x
and

nX
k=0

sin kx =
sin n

2x sin
n+1
2 x

sin 12x

As cos kx+ i sin kx =
¡
eix
¢k
then these sums are the real and imaginary parts of a geometric series, with

first term 1, common ration eix and n+ 1 terms in total. So recalling

1 + r + r2 + · · ·+ rn =
rn+1 − 1
r − 1 ,

we have

nX
k=0

¡
eix
¢k

=
e(n+1)ix − 1
eix − 1

=
einx/2

¡
e(n+1)ix/2 − e−(n+1)ix/2

¢
eix/2 − e−ix/2

= einx/2
2i sin n+1

2 x

2i sin 12x

=
³
cos

nx

2
+ i sin

nx

2

´ sin n+1
2 x

sin 12x
.

The results follow by taking real and imaginary parts.
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9 Distance and Angles in the Complex Plane
Let z = z1 + iz2 and w = w1 + iw2 be two complex numbers. By Pythagoras’ Theorem the distance
between z and w as points in the complex plane equals

distance =
q
(z1 − w1)

2
+ (z2 − w2)

2

= |(z1 − w1) + i (z2 − w2)|
= |(z1 + iz2)− (w1 + iw2)|
= |z − w| .

Let a = a1 + ia2, b = b1 + ib2, and c = c1 + ic2 be three points in the complex plane representing three
points A, B and C. To calculate the angle ]BAC as in the diagram we see

]BAC = arg (c− a)− arg (b− a) = arg

µ
c− a

b− a

¶
.

Note that if in the diagram B and C we switched then we get the larger angle

arg

µ
c− a

b− a

¶
= 2π − ]BAC.

1 2 3 4 5 6

1

2

3

4

5

1+i

5+4i

4

3

The distance here is
√
32 + 42 = 5

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

3+3i

1+i

2

The angle here is arg
³
2+2i
1−i

´
= arg 2i = 1

2π

Problem 32 Find the smaller angle ]BAC where a = 1 + i, b = 3 + 2i, and c = 4− 3i.

]BAC = arg

µ
b− a

c− a

¶
= arg

µ
2 + i

3− 4i

¶
= arg

µ
(2 + i) (3 + 4i)

32 + 42

¶
= arg

µ
2 + 11i

25

¶
= arctan

µ
11

2

¶
∼= 1.3909 radians.
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10 A Selection of Geometric Theory
When using complex numbers to prove geometric theorems it is prudent to choose our complex co-
ordinates so as to make the calculations as simple as possible. If we put co-ordinates on the plane we can
choose

• where to put the origin;

• where the real and imaginary axes go;

• what unit length to use.

For example if we are asked to prove a theorem about a circle then we can take the centre of the circle
as our origin. We can also choose our unit length to be that of the radius of the circle. If we have points
on the circle to consider then we can take one of the points to be the point 1. However these choices
(largely) use up all our ‘degrees of freedom’ and any other points need to be treated generally.

Similarly if we were considering a triangle then we could choose two of the vertices to be 0 and 1 but the
other point (unless we know something special about the triangle, say that it is equilateral or isoceles)
we need to treat as an arbitrary point z.

We now prove a selection of basic geometric facts. Here is a quick reminder of some identities (from
Lecture 1) which will prove useful in their proofs.

Re z =
z + z

2
,

zz = |z|2 ,

cos arg z =
Re z

|z| .

Theorem 33 (THE COSINE RULE). Let ABC be a triangle. Then

|BC|2 = |AB|2 + |AC|2 − 2 |AB| |AC| cos Â.

We can choose our co-ordinates in the plane so that A is at the origin and B is at 1. Let C be at the
point z. So in terms of our co-ordinates:

|BC| = |z − 1| ;
|AB| = 1;

|AC| = |z| ;
Â = arg z.

So

RHS = |z|2 + 1− 2 |z| cos arg z

= zz + 1− 2 |z| × Re z|z|

= zz + 1− 2× (z + z)

2
= zz + 1− z − z

= (z − 1) (z − 1)
= |z − 1|2 = LHS.

18



Theorem 34 The diameter of a circle subtends a right angle at the circumference.

We can choose our co-ordinates in the plane so that the circle has unit radius with its centre at the origin
and with the diameter in question having endpoints 1 and −1. Take an arbitrary point z in the complex
plane — for the moment we won’t assume z to be on the circumference.

1−1

z

From the diagram we see that below the diameter we want to show

arg (−1− z)− arg (1− z) =
π

2
,

and above the diameter we wish to show that

arg(−1− z)− arg (1− z) = −π
2
.

Recalling that arg (z/w) = arg z − argw we see that we need to prove that

arg

µ
−1− z

1− z

¶
= ±π

2

or equivalently we wish to show that (−1− z) / (1− z) is purely imaginary — i.e. it has no real part.

To say that a complex number w is purely imaginary is equivalent to saying that w = −w — i.e. thatµ
−1− z

1− z

¶
= −

µ
−1− z

1− z

¶
.

which is the same as saying
−1− z

1− z
=
1 + z

1− z
.

Multiplying up we see this is the same as

(−1− z) (1− z) = (1 + z) (1− z) .

Expanding this becomes
−1− z + z + zz = 1 + z − z − zz.

Rearranging this is the same as zz = 1 but as |z|2 = zz we see we must have

|z| = 1.

What we have now shown is in fact more than the required theorem. We have shown that the diameter
subtends a right angle at a point on the circumference and subtends right angles nowhere else.
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11 Transformations of the Complex Plane
We now describe some transformations of the complex plane and show how they can be written in terms
of complex numbers.

Translations: A translation of the plane is one which takes the point (x, y) to the point (x+ a, y + b)
where a and b are two real constants. In terms of complex co-ordinates this is the map z 7→ z+ z0 where
z0 = a+ ib.

Rotations: Consider rotation the plane about the origin anti-clockwise through an angle α. If we take
an arbitrary point in polar form reiθ then this will rotate to the point

rei(θ+α) = reiθeiα.

So this rotation is represented in complex co-ordinates as the map z 7→ zeiα.

More generally, any rotation of C, not necessarily about the origin has the form z 7→ az+b where a, b ∈ C,
with |a| = 1 and a 6= 1.

Reflections: We have already commented that z 7→ z denotes reflection in the real axis.

More generally, any reflection about the origin has the form z 7→ az + b where a, b ∈ C and |a| = 1.

What we have listed here are the three types of isometry of C. An isometry of C is a map f : C → C
which preserves distance – that is for any two points z and w in C the distance between f (z) and f (w)
equals the distance between a and b. Mathematically this means

|f (z)− f (w)| = |z − w|

for any complex numbers z and w.

Proposition 35 Let f : C→ C be an isometry. Then there exist complex numbers a and b with |a| = 1
such that

f (z) = az + b or f (z) = az + b

for each z ∈ C.

Problem 36 Express in the form f (z) = az + b reflection in the line x+ y = 1.

Solution one: Knowing from the proposition that the reflection has the form f (z) = az+ b we can find
a and b by considering where two points go to. As 1 and i both lie on the line of reflection then they are
both fixed. So

a1 + b = a1 + b = 1,

−ai+ b = ai+ b = i.

Substituting b = 1− a into the second equation we find

a =
1− i

1 + i
= −i,

and b = 1 + i. Hence
f (z) = −iz + 1 + i.

Solution two: We introduce as alternative method here – the idea of changing co-ordinates. We take
a second set of complex co-ordinates in which the point z = 1 is the origin and for which the line of
reflection is the real axis. The second complex co-ordinate w is related to the first co-ordinate z by

w = (1 + i) (z − 1) .

20



For example when z = 1 then w = 0, when z = i then w = −2, when z = 2 − i then w = 2, when
z = 2+ i then w = 2i. The real axis for the w co-ordinate has equation x+ y = 1 and the imaginary axis
has equation y = x− 1 in terms of our original co-ordinates.

The point to all this is that as w’s real axis is the line of reflection then the transformation we’re interested
in is given by w 7→ w in the new co-ordinates.

Take then a point with complex co-ordinate z in our original co-ordinates system.

Its w-co-ordinate is (1 + i) (z − 1) – note we haven’t moved the point yet, we’ve just changed co-
ordinates.

Now if we reflect the point we know the w-co-ordinate of the new point is (1 + i) (z − 1) = (1− i) (z − 1) .

Finally to get from the w-co-ordinate of the image point to the z-co-ordinate we reverse the co-ordinate
change to get

(1− i) (z − 1)
1 + i

+ 1 = −i (z − 1) + 1 = −iz + i+ 1

as required.
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12 Appendix 1 – Properties of the Exponential
In Proposition 17 we stated the following for any complex number z.

1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

converges to a complex value which we shall denote as ez. The function ez has the following properties

(i)
d
dz

ez = ez, e0 = 1,

(ii) ez+w = ezew for any complex z, w,

(iii) ez 6= 0 for any complex z.

For the moment we shall leave aside any convergence issues.

To prove property (i) we assume that we can differentiate a power series term by term. Then we have

d
dz

ez =
d
dz

µ
1 + z +

z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

¶
= 0 + 1 +

2z

2!
+
3z2

3!
+ · · · nz

n−1

n!
+ · · ·

= 1 + z +
z2

2!
+ · · · zn−1

(n− 1)! + · · ·

= ez.

We give two proofs of property (ii)

PROOF ONE: Let x be a complex variable and let y be a constant (but arbitrary) complex number.
Consider the function

F (x) = ey+xey−x.

If we differentiate F by the product and chain rules, and knowing that ex differentiates to itself we have

F 0 (x) = ey+xey−x + ey+x
¡
−ey−x

¢
= 0

and so F is a constant function. But note that F (y) = e2ye0 = e2y. Hence we have

ey+xey−x = e2y.

Now set x = (z − w) /2 and y = (z + w) /2 and we arrive at required identity: ezew = ez+w.

PROOF TWO: If we multiply two (convergent) power series

∞X
n=0

ant
n and

∞X
n=0

bnt
n

we get another (convergent) power series

∞X
n=0

cnt
n where cn =

nX
k=0

akbn−k.

Consider

ezt =
∞X
n=0

zn

n!
tn so that an =

zn

n!
,

ewt =
∞X
n=0

wn

n!
tn so that bn =

wn

n!
.
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Then

cn =
nX

k=0

zk

k!

wn−k

(n− k)!

=
1

n!

nX
k=0

n!

k! (n− k)!
zkwn−k

=
1

n!
(z + w)

n
,

by the binomial theorem. So

eztewt =
∞X
n=0

zn

n!
tn
∞X
n=0

wn

n!
tn =

∞X
n=0

(w + z)n

n!
tn = e(w+z)t.

If we set t = 1 then we have the required result.

Property (iii), that ez 6= 0 for all complex z follows from the fact that eze−z = 1.

12.1 Appendix 2 — Power Series

We have assumed many properties of power series throughout this lecture which we state here though it
is beyond the scope of the course to prove these facts rigorously.

As we have only been considering the power series of exponential, trigonometric and hyperbolic functions
it would be reasonable, but incorrect, to think that all power series converge everywhere. This is far from
the case.

Given a power series
P∞

n=0 anz
n where the coefficients an are complex there is a real or infinite number

R in the range 0 ≤ R ≤ ∞ such that

∞X
n=0

anz
n converges to some complex value when |z| < R,

∞X
n=0

anz
n does not converge to a complex value when |z| > R.

What happens to the power series when |z| = R depends very much on the individual power serises.

The number R is called the radius of convergence of the power series.

For the exponential, trigonometric and hyperbolic power series we have already seen that R =∞.

For the geometric progression
P∞

n=0 z
n this converges to (1− z)−1 when |z| < 1 and does not converge

when |z| ≥ 1. So for this power series R = 1.

An important fact that we assumed in the previous appendix is that a power series can be differenti-
ated term by term to give the derivative of the power series. So the derivative of

P∞
n=0 anz

n equalsP∞
n=1 nanz

n−1 and this will have the same radius of convergence as the original power series.
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